Glaciers#

Glaciers explorer using Datashader#

This notebook provides an annotated hvPlot+Panel implementation of a dashboard originally developed by Fabien Maussion in Plotly+Dash for viewing data about the Earth’s glaciers from the Open Global Glacier Model.

../../_images/screenshot.png
import numpy as np
import pandas as pd
import holoviews as hv
import panel as pn
import hvplot.pandas # noqa

from colorcet import bmy
from holoviews.util.transform import lon_lat_to_easting_northing as ll_en

Load the data#

Here we will load the glaciers data and project the latitudes and longitudes to Google Mercator coordinates, which will allow us to plot it on top of a tile source. We do this by using the lon_lat_to_easting_northing function from holoviews.

We also use the pn.state.as_cached function to cache the data to ensure that only the first visitor to our app has to load the data.

def load_data():
    df = pd.read_csv('data/oggm_glacier_explorer.csv')
    df['x'], df['y'] = ll_en(df.cenlon, df.cenlat)
    return df

df = pn.state.as_cached('glaciers', load_data)

df.tail()
rgi_id cenlon cenlat area_km2 glacier_type terminus_type mean_elev max_elev min_elev avg_temp_at_mean_elev avg_prcp x y
213745 RGI60-18.03533 170.354 -43.4215 0.189 Glacier Land-terminating 1704.858276 2102.0 1231.0 2.992555 6277.991881 1.896372e+07 -5.376350e+06
213746 RGI60-18.03534 170.349 -43.4550 0.040 Glacier Land-terminating 2105.564209 2261.0 1906.0 0.502311 6274.274146 1.896316e+07 -5.381486e+06
213747 RGI60-18.03535 170.351 -43.4400 0.184 Glacier Land-terminating 1999.645874 2270.0 1693.0 1.187901 6274.274146 1.896339e+07 -5.379186e+06
213748 RGI60-18.03536 170.364 -43.4106 0.111 Glacier Land-terminating 1812.489014 1943.0 1597.0 2.392771 6154.064456 1.896483e+07 -5.374680e+06
213749 RGI60-18.03537 170.323 -43.3829 0.085 Glacier Land-terminating 1887.771484 1991.0 1785.0 1.351039 6890.991816 1.896027e+07 -5.370436e+06

Add linked selections#

Linked selections are a way to interlink different plots which use the same data. With linked selections, you can explore how a particular subset of your data is rendered across the different types of plot you create.

All we have to do to add linked selections to static plots is make a hv.link_selections instance and apply it to our plots:

Let’s create a pane that renders the count of total selections:

ls = hv.link_selections.instance()

def clear_selections(event):
    ls.selection_expr = None

clear_button = pn.widgets.Button(name='Clear selection', align='center')

clear_button.param.watch(clear_selections, 'clicks');

total_area = df.area_km2.sum()

def count(data):
    selected_area  = np.sum(data['area_km2'])
    selected_percentage = selected_area / total_area * 100
    return f'## Glaciers selected: {len(data)} | Area: {selected_area:.0f} km² ({selected_percentage:.1f}%)</font>'

dynamic_count = pn.bind(count, ls.selection_param(df))

pn.Row(
    pn.pane.Markdown(pn.bind(count, ls.selection_param(df)), align='center', width=600),
    clear_button
)

Plot the data#

As you can see in the dataframe, there are a lot of things that could be plotted about this dataset, but following the previous version let’s focus on the lat/lon location, elevation, temperature, and precipitation. We’ll use tools from HoloViz, starting with HvPlot as an easy way to build interactive Bokeh plots.

We now create different types of plot to display different aspects of the data. With the created link_selections instance, we can inspect how selecting an area of one plot will also render the same data point in the other plots.

geo = df.hvplot.points(
    'x', 'y', rasterize=True, tools=['hover'], tiles='ESRI', cmap=bmy, logz=True, colorbar=True,
    xaxis=None, yaxis=False, ylim=(-7452837.583633271, 6349198.00989753), min_height=400, responsive=True
).opts('Tiles', alpha=0.8, bgcolor='black')

scatter = df.hvplot.scatter(
    'mean_elev', 'cenlat', rasterize=True, fontscale=1.2, grid=True,
    xlabel='Elevation', ylabel='Latitude (degree)', responsive=True, min_height=400,
)

temp = df.hvplot.hist(
    'avg_temp_at_mean_elev', fontscale=1.2, bins=50, responsive=True, min_height=350, fill_color='#f1948a'
)

precipitation = df.hvplot.hist(
    'avg_prcp', fontscale=1.2, bins=50, responsive=True, min_height=350, fill_color='#85c1e9'
)

plots = pn.pane.HoloViews(ls(geo + scatter + temp + precipitation).cols(2).opts(sizing_mode='stretch_both'))
plots